Tutorial R : Cara Menggunakan Data Reshaping di Pemrograman R - Masnaato
Skip to content Skip to sidebar Skip to footer

Tutorial R : Cara Menggunakan Data Reshaping di Pemrograman R

Tutorial R : Cara Menggunakan Data Reshaping di Pemrograman R



Pembentukan Ulang Data di R adalah tentang mengubah cara data diatur ke dalam baris dan kolom. Sebagian besar waktu pemrosesan data di R dilakukan dengan mengambil data masukan sebagai kerangka data. Mudah untuk mengekstrak data dari baris dan kolom bingkai data tetapi ada situasi ketika kami membutuhkan bingkai data dalam format yang berbeda dari format yang kami terima. R memiliki banyak fungsi untuk memisahkan, menggabungkan, dan mengubah baris menjadi kolom dan sebaliknya dalam bingkai data.

Menggabungkan Kolom dan Baris dalam Bingkai Data

Kita bisa menggabungkan beberapa vektor untuk membuat bingkai data menggunakan fungsi cbind () . Juga kita bisa menggabungkan dua frame data menggunakan fungsi rbind () .

# Create vector objects.
city <- c("Tampa","Seattle","Hartford","Denver")
state <- c("FL","WA","CT","CO")
zipcode <- c(33602,98104,06161,80294)

# Combine above three vectors into one data frame.
addresses <- cbind(city,state,zipcode)

# Print a header.
cat("# # # # The First data frame\n") 

# Print the data frame.
print(addresses)

# Create another data frame with similar columns
new.address <- data.frame(
   city = c("Lowry","Charlotte"),
   state = c("CO","FL"),
   zipcode = c("80230","33949"),
   stringsAsFactors = FALSE
)

# Print a header.
cat("# # # The Second data frame\n") 

# Print the data frame.
print(new.address)

# Combine rows form both the data frames.
all.addresses <- rbind(addresses,new.address)

# Print a header.
cat("# # # The combined data frame\n") 

# Print the result.
print(all.addresses)

Ketika kita menjalankan kode di atas, hasilnya adalah sebagai berikut -

# # # # The First data frame
     city       state zipcode
[1,] "Tampa"    "FL"  "33602"
[2,] "Seattle"  "WA"  "98104"
[3,] "Hartford" "CT"   "6161" 
[4,] "Denver"   "CO"  "80294"

# # # The Second data frame
       city       state   zipcode
1      Lowry      CO      80230
2      Charlotte  FL      33949

# # # The combined data frame
       city      state zipcode
1      Tampa     FL    33602
2      Seattle   WA    98104
3      Hartford  CT     6161
4      Denver    CO    80294
5      Lowry     CO    80230
6     Charlotte  FL    33949

Menggabungkan Bingkai Data

Kita bisa menggabungkan dua frame data dengan menggunakan fungsi merge () . Bingkai data harus memiliki nama kolom yang sama tempat penggabungan terjadi.

Dalam contoh di bawah ini, kami mempertimbangkan kumpulan data tentang Diabetes pada Wanita India Pima yang tersedia di nama perpustakaan "MASS". kami menggabungkan dua kumpulan data berdasarkan nilai tekanan darah ("bp") dan indeks massa tubuh ("bmi"). Saat memilih dua kolom ini untuk penggabungan, rekaman di mana nilai dari dua variabel ini cocok di kedua kumpulan data digabungkan bersama untuk membentuk satu bingkai data.

library(MASS)
merged.Pima <- merge(x = Pima.te, y = Pima.tr,
   by.x = c("bp", "bmi"),
   by.y = c("bp", "bmi")
)
print(merged.Pima)
nrow(merged.Pima)

Ketika kita menjalankan kode di atas, hasilnya adalah sebagai berikut -

   bp  bmi npreg.x glu.x skin.x ped.x age.x type.x npreg.y glu.y skin.y ped.y
1  60 33.8       1   117     23 0.466    27     No       2   125     20 0.088
2  64 29.7       2    75     24 0.370    33     No       2   100     23 0.368
3  64 31.2       5   189     33 0.583    29    Yes       3   158     13 0.295
4  64 33.2       4   117     27 0.230    24     No       1    96     27 0.289
5  66 38.1       3   115     39 0.150    28     No       1   114     36 0.289
6  68 38.5       2   100     25 0.324    26     No       7   129     49 0.439
7  70 27.4       1   116     28 0.204    21     No       0   124     20 0.254
8  70 33.1       4    91     32 0.446    22     No       9   123     44 0.374
9  70 35.4       9   124     33 0.282    34     No       6   134     23 0.542
10 72 25.6       1   157     21 0.123    24     No       4    99     17 0.294
11 72 37.7       5    95     33 0.370    27     No       6   103     32 0.324
12 74 25.9       9   134     33 0.460    81     No       8   126     38 0.162
13 74 25.9       1    95     21 0.673    36     No       8   126     38 0.162
14 78 27.6       5    88     30 0.258    37     No       6   125     31 0.565
15 78 27.6      10   122     31 0.512    45     No       6   125     31 0.565
16 78 39.4       2   112     50 0.175    24     No       4   112     40 0.236
17 88 34.5       1   117     24 0.403    40    Yes       4   127     11 0.598
   age.y type.y
1     31     No
2     21     No
3     24     No
4     21     No
5     21     No
6     43    Yes
7     36    Yes
8     40     No
9     29    Yes
10    28     No
11    55     No
12    39     No
13    39     No
14    49    Yes
15    49    Yes
16    38     No
17    28     No
[1] 17

Melting dan Casting

Salah satu aspek yang paling menarik dari pemrograman R adalah tentang mengubah bentuk data dalam beberapa langkah untuk mendapatkan bentuk yang diinginkan. Fungsi yang digunakan untuk melakukan ini disebut melt () dan cast () .

Kami menganggap dataset yang disebut kapal hadir di perpustakaan yang disebut "MASS".

library(MASS)
print(ships)

Ketika kita menjalankan kode di atas, hasilnya adalah sebagai berikut -

     type year   period   service   incidents
1     A   60     60        127         0
2     A   60     75         63         0
3     A   65     60       1095         3
4     A   65     75       1095         4
5     A   70     60       1512         6
.............
.............
8     A   75     75       2244         11
9     B   60     60      44882         39
10    B   60     75      17176         29
11    B   65     60      28609         58
............
............
17    C   60     60      1179          1
18    C   60     75       552          1
19    C   65     60       781          0
............
............

Lelehkan Data

Sekarang kami mencairkan data untuk mengaturnya, mengonversi semua kolom selain tipe dan tahun menjadi beberapa baris.

molten.ships <- melt(ships, id = c("type","year"))
print(molten.ships)

Ketika kita menjalankan kode di atas, hasilnya adalah sebagai berikut -

      type year  variable  value
1      A   60    period      60
2      A   60    period      75
3      A   65    period      60
4      A   65    period      75
............
............
9      B   60    period      60
10     B   60    period      75
11     B   65    period      60
12     B   65    period      75
13     B   70    period      60
...........
...........
41     A   60    service    127
42     A   60    service     63
43     A   65    service   1095
...........
...........
70     D   70    service   1208
71     D   75    service      0
72     D   75    service   2051
73     E   60    service     45
74     E   60    service      0
75     E   65    service    789
...........
...........
101    C   70    incidents    6
102    C   70    incidents    2
103    C   75    incidents    0
104    C   75    incidents    1
105    D   60    incidents    0
106    D   60    incidents    0
...........
...........

Transmisikan Data Molten

Kami dapat mentransmisikan data cair ke dalam bentuk baru di mana agregat dari setiap jenis kapal untuk setiap tahun dibuat. Itu dilakukan dengan menggunakan fungsi cast () .

recasted.ship <- cast(molten.ships, type+year~variable,sum)
print(recasted.ship)

Ketika kita menjalankan kode di atas, hasilnya adalah sebagai berikut -

     type year  period  service  incidents
1     A   60    135       190      0
2     A   65    135      2190      7
3     A   70    135      4865     24
4     A   75    135      2244     11
5     B   60    135     62058     68
6     B   65    135     48979    111
7     B   70    135     20163     56
8     B   75    135      7117     18
9     C   60    135      1731      2
10    C   65    135      1457      1
11    C   70    135      2731      8
12    C   75    135       274      1
13    D   60    135       356      0
14    D   65    135       480      0
15    D   70    135      1557     13
16    D   75    135      2051      4
17    E   60    135        45      0
18    E   65    135      1226     14
19    E   70    135      3318     17
20    E   75    135       542      1

Post a Comment for "Tutorial R : Cara Menggunakan Data Reshaping di Pemrograman R"